Page cover

Equilink Best Practices

This guide outlines best practices for developing, deploying, and maintaining Equilink implementations. Following these guidelines ensures security, performance, and maintainability.

Key Management

  1. Wallet Security

# DON'T: Store private keys in configuration files
private_key = config['wallet']['private_key']  # Unsafe

# DO: Use environment variables or secure key management
from equilink.security import KeyManager
key_manager = KeyManager()
private_key = await key_manager.get_key('wallet')
  1. API Key Protection

  • Use secret management services

  • Rotate keys regularly

  • Implement key usage monitoring

Transaction Safety

  1. Implement Transaction Guards

@transaction_guard
async def execute_trade(amount: float, token: str):
    # Guards check:
    # - Transaction size limits
    # - Gas price reasonability
    # - Contract allowances
    # - Balance sufficiency
  1. Multi-signature Requirements

# Require multiple signatures for large transactions
@require_multi_sig(threshold=1000)
async def large_transfer(amount: float):
    # Implementation

Memory Management

  1. Efficient Data Structures

# DON'T: Keep unlimited history
full_history = []  # Grows indefinitely

# DO: Use fixed-size data structures
from collections import deque
recent_history = deque(maxlen=1000)
  1. Resource Cleanup

async with AsyncContextManager() as manager:
    # Resources automatically cleaned up
    await manager.process()

Concurrent Operations

  1. Task Management

# DON'T: Create unlimited tasks
for item in items:
    asyncio.create_task(process(item))  # Dangerous

# DO: Use task pools
async with TaskPool(max_size=10) as pool:
    await pool.map(process, items)
  1. Rate Limiting

@rate_limit(calls=100, period=60)
async def api_call():
    # Implementation

Prompt Engineering

  1. Structured Prompts

# DO: Use templated prompts
prompt_template = """
Context: {context}
Task: {task}
Constraints: {constraints}
"""

# DON'T: Use hard-coded strings
prompt = "Analyze the market..."  # Inflexible
  1. Response Validation

def validate_ai_response(response: dict):
    schema = ResponseSchema({
        'recommendation': str,
        'confidence': float,
        'reasoning': list
    })
    return schema.validate(response)

Model Management

  1. Fallback Strategies

async def get_analysis(text: str):
    try:
        return await primary_model.analyze(text)
    except ModelTimeout:
        return await fallback_model.analyze(text)
  1. Response Caching

@cache(ttl=300)  # 5 minutes
async def get_market_sentiment(token: str):
    return await model.analyze_sentiment(token)

Storage Optimization

  1. Data Lifecycle

class DataManager:
    async def archive_old_data(self):
        """Archive data older than 30 days."""
        cutoff = datetime.now() - timedelta(days=30)
        await self.move_to_archive(cutoff)
  1. Efficient Querying

# DON'T: Fetch all records
all_trades = await Trade.all()

# DO: Use pagination and filters
trades = await Trade.filter(
    timestamp__gte=yesterday
).limit(100).offset(0)

Data Validation

  1. Input Validation

from pydantic import BaseModel

class TradeInput(BaseModel):
    amount: float
    token: str
    price: float

    @validator('amount')
    def validate_amount(cls, v):
        if v <= 0:
            raise ValueError('Amount must be positive')
        return v
  1. Data Integrity Checks

async def verify_transaction(tx_hash: str):
    # Check multiple sources
    onchain_data = await blockchain.get_transaction(tx_hash)
    indexer_data = await indexer.get_transaction(tx_hash)
    
    return verify_consistency(onchain_data, indexer_data)

Logging Strategy

  1. Structured Logging

# DO: Use structured logs
logger.info('Trade executed', extra={
    'amount': amount,
    'token': token,
    'gas_used': gas,
    'timestamp': timestamp
})

# DON'T: Use string concatenation
logger.info(f'Trade executed: {amount} {token}')  # Hard to parse
  1. Log Levels

# Error: Failed operations
logger.error('Transaction failed', exc_info=True)

# Warning: Unusual but handled situations
logger.warning('High gas price detected')

# Info: Normal operations
logger.info('Market analysis completed')

# Debug: Detailed information for debugging
logger.debug('Raw API response', extra={'response': response})

Metrics Collection

  1. Performance Metrics

@measure_execution_time
async def process_block(block_number: int):
    # Implementation

@track_memory_usage
async def analyze_market_data():
    # Implementation
  1. Business Metrics

async def track_trading_metrics():
    await metrics.gauge('trading.volume.24h', volume)
    await metrics.histogram('trading.price.distribution', prices)

Graceful Degradation

  1. Circuit Breakers

@circuit_breaker(
    failure_threshold=5,
    recovery_timeout=300
)
async def external_api_call():
    # Implementation
  1. Fallback Mechanisms

async def get_price(token: str):
    try:
        return await primary_source.get_price(token)
    except TimeoutError:
        return await backup_source.get_price(token)
    except AllSourcesFailed:
        return await get_last_known_price(token)

Test Categories

  1. Unit Tests

def test_price_calculation():
    calculator = PriceCalculator()
    result = calculator.calculate(100, 0.1)
    assert result == 110
  1. Integration Tests

@pytest.mark.integration
async def test_trade_execution():
    agent = EquilinkAgent()
    result = await agent.execute_trade(
        amount=1,
        token="TEST"
    )
    assert result.status == "completed"
  1. Performance Tests

@pytest.mark.benchmark
async def test_analysis_performance():
    start = time.time()
    await analyze_market()
    duration = time.time() - start
    assert duration < 1.0  # Should complete within 1 second

Configuration Management

  1. Environment-Based Config

development:
  log_level: debug
  api_timeout: 30
  
production:
  log_level: info
  api_timeout: 5
  1. Feature Flags

if feature_flags.enabled('new_trading_engine'):
    await new_engine.execute(trade)
else:
    await legacy_engine.execute(trade)

Deployment Process

  1. Staged Rollout

async def deploy_update():
    # 1. Deploy to staging
    await deploy_to_env('staging')
    
    # 2. Run validation tests
    await validate_deployment()
    
    # 3. Gradual production rollout
    for region in regions:
        await rolling_update(region)
        await monitor_health(region)

Remember:

  • Regular security audits

  • Comprehensive documentation

  • Continuous monitoring

  • Regular dependency updates

  • Backup and recovery testing

Last updated