Getting Started with Equilink
This guide will help you set up and run your own instance of Equilink. Follow these instructions carefully to ensure proper installation and configuration.
System Requirements
Python 3.11 or higher
Node.js 18+ (for frontend components)
16GB RAM minimum (32GB recommended)
Linux/macOS/Windows with WSL2
Required Accounts and API Keys
Ethereum/Solana node access (Infura, Alchemy, or private node)
AI API access:
Anthropic API key (Claude)
Groq API credentials
Social platform access:
Twitter Developer API keys
Discord Bot tokens
Blockchain explorer API keys (optional)
Clone the Equilink repository:
git clone https://github.com/yourusername/equilink.git
cd equilink
Set up a Python virtual environment:
python -m venv venv
source venv/bin/activate # Linux/Mac
.\venv\Scripts\activate # Windows
Install required dependencies:
pip install -r requirements.txt
npm install # for frontend components
Configure your environment:
cp .env.example .env
# Edit .env with your API keys and configuration
Core Configuration Files
config/main.yaml
: Primary configuration file
api:
anthropic:
key: ${ANTHROPIC_API_KEY}
groq:
key: ${GROQ_API_KEY}
blockchain:
ethereum:
rpc_url: ${ETH_RPC_URL}
chain_id: 1
solana:
rpc_url: ${SOLANA_RPC_URL}
config/agent.yaml
: Agent behavior settings
agent:
memory_size: 1000
response_timeout: 30
risk_tolerance: medium
config/defi.yaml
: DeFi protocol settings
protocols:
uniswap:
version: 3
enabled: true
aave:
version: 3
enabled: true
Starting the Agent
from equilink.core import EquilinkAgent
# Initialize the agent
agent = EquilinkAgent()
# Start the agent with default configuration
await agent.start()
# Or start with custom configuration
await agent.start(config_path="path/to/custom/config.yaml")
Basic Operations
Market Analysis
# Analyze specific token
analysis = await agent.analyze_market("ETH")
# Get portfolio recommendations
recommendations = await agent.get_recommendations(
risk_level="medium",
investment_size=1000
)
Portfolio Management
# Check portfolio status
portfolio = await agent.get_portfolio()
# Execute trade
trade_result = await agent.execute_trade(
token_in="USDC",
token_out="ETH",
amount=1000
)
Social Analysis
# Get sentiment analysis
sentiment = await agent.analyze_sentiment("ETH")
# Monitor social trends
trends = await agent.get_social_trends(
platforms=["twitter", "discord"],
timeframe="24h"
)
Customizing Agent Behavior
Create a custom configuration file custom_config.yaml
:
agent:
risk_tolerance: high
trading:
max_slippage: 0.5
gas_limit: 500000
analysis:
depth: deep
timeframe: 7d
Setting Up Automated Tasks
Create a task configuration:
task_config = {
"name": "daily_portfolio_rebalance",
"schedule": "0 0 * * *", # Daily at midnight
"parameters": {
"max_deviation": 5,
"gas_priority": "medium"
}
}
# Register the task
await agent.register_task(task_config)
Health Checks
# Check system status
status = await agent.system_status()
# View performance metrics
metrics = await agent.get_metrics()
Logs and Debugging
Logs are stored in
logs/equilink.log
Debug mode can be enabled in configuration:
debug:
enabled: true
level: verbose
log_path: custom/path/debug.log
Common issues and solutions:
Connection Issues
# Reset connections
await agent.reset_connections()
# Test specific connection
connection_status = await agent.test_connection("ethereum")
API Rate Limits
Implement retries in configuration:
api:
retry:
max_attempts: 3
delay: 1000
Review the API Documentation
Explore Advanced Features
Check out Example Scripts
Last updated